Potentials
Given all the integrals implemented in openLOWDIN (see Integrals), the code is capable of building the following potentials to the Core and Fock matrices:
Fixed point charges repulsion
\begin{equation}
V_{PP} = \sum_{I,J} \frac{Z_I Z_J}{R_{IJ}}
\end{equation}
Quantum/fixed charges interaction
\begin{equation}
\hat{V}_{\mathbb{PC}} = \sum_{j}^{n_c} \frac{q_i^{\alpha} Z_J}{r_i - R_{J}}, \quad
{\bf V}_{\mathbb{PC}} = q^{\alpha} \sum_{j}^{n_c} Z_J \mathbb{PC}^\alpha
\end{equation}
External electric field. It requires adding in the CONTROL section a non-zero electric field strength \(\vec{F}\) for each cartesian component XYZ as a real vector ELECTRIC_FIELD = [real real real]
\begin{equation}
\sum_{\mathbb{A}}^{X,Y,Z} \hat{V}_{\mathbb{UA}} = \sum_{\mathbb{A}}^{X,Y,Z}\sum_{i}^{N_{\alpha}} q_i^{\alpha} F_{\mathbb{A}} \cdot r_{i,\mathbb{A}} , \quad
\sum_{\mathbb{A}}^{X,Y,Z} {\bf V}_{\mathbb{UA}} = \sum_{\mathbb{A}}^{X,Y,Z} q^{\alpha} F_{\mathbb{A}} \mathbb{UA}^\alpha
\end{equation}
Harmonic potential, centered at the origin of coordinates. It requires to declare non-zero frequency \(\omega\) in the GEOMETRY block with the flag omega = [real]
\begin{equation}
\hat{V}_{\mathbb{HA}} = \sum_{i}^{N_{\alpha}} \frac{1}{2} m^{\alpha} (\omega^{\alpha})^2 r^2_{i} , \quad
{\bf V}_{\mathbb{HA}} = \frac{1}{2} m^{\alpha} (\omega^{\alpha})^2 \mathbb{HA}^\alpha
\end{equation}
Quantrum Drude oscillator potential. It requires to declare non-zero frequency \(\omega\) in the GEOMETRY block with the flag omega = [real] , as well as declaring a fixed point charge as the QDO charged center associated to the quantum species symbol with the flag qdoCenterOf= [character], adding this flag will replace the quantum/fixed Coulomb potential with this point charge.
For example H dirac 0.00 0.00 0.00 qdoCenterOf=EA- (See Quantum Drude Oscillators, QDOs)
\begin{equation}
\hat{V}_{QDO} = \sum_{i}^{N_{\alpha}} \frac{1}{2} m^{\alpha} (\omega^{\alpha})^2 (r_{i} - R_{QDO}^{\alpha})^2 , \quad
{\bf V}_{QDO} = \frac{1}{2} m^{\alpha} (\omega^{\alpha})^2 \mathbb{HA}^\alpha
\end{equation}
External potential. See External potential basis
\begin{equation}
\hat{V}_1^{\alpha} = \sum_i^{N_{\alpha}}\sum_{\tau}^{N_{bas}^{\alpha}} C_{\tau}^{\alpha} (x_i-X_{\tau})^{l_{\tau}^{\alpha}}(y_i-Y_{\tau})^{m_{\tau}^{\alpha}}(z_i-Z_{\tau})^{n_{\tau}^{\alpha}}
\times \text{exp}[ -a_{\tau}^{\alpha} (\mathbf{r}_i - \mathbf{R}_{\tau})^2 ],
{\bf V}_1^{\alpha} = \mathbb{3C}^{\alpha}
\end{equation}
Intraspecies repulsion
\begin{equation}
\hat{V}_{2}^{\alpha\alpha} = \sum_{i\ne j}^{N_{\alpha}} \frac{q_i^{\alpha} q_j^{\alpha} }{r_i - r_{j}}, \quad
{\bf V}_{2}^{\alpha\alpha} = q^{\alpha} q^{\alpha} G^\alpha
\end{equation}
Interspecies repulsion
\begin{equation}
\sum_{\beta\ne \alpha}^{N_{sp}} \hat{V}_{2}^{\alpha\beta} = \sum_{\beta\ne \alpha}^{N_{sp}} \sum_{i}^{N_{\alpha}} \sum_{j}^{N_{\beta}} \frac{q_i^{\alpha} q_j^{\alpha} }{r_i - r_{j}}, \quad
\sum_{\beta\ne \alpha}^{N_{sp}} {\bf V}_{2}^{\alpha\beta} = \sum_{\beta\ne \alpha}^{N_{sp}} q^{\alpha} q^{\beta} G^\beta
\end{equation}
Internal potential. See Internal potential basis. Notice this potential will replace the Coulomb intraspecies or interspecies potential.
\begin{equation}
V_2^{\alpha\beta} = \sum_{i}^{N_{\alpha}} \sum_{j}^{N_{\beta}} \sum_{\tau}^{N_{bas}^{\alpha\beta}} C_{\tau}^{\alpha\beta} \text{exp}[ -a_{\tau}^{\alpha\beta} (\mathbf{r}^{\alpha}_i - \mathbf{r}^{\beta}_{j})^2 ], \quad
{\bf V}_2^{\alpha\beta} = \mathbb{5C}^{\alpha}
\end{equation}